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Abstract

A Vlasov equilibrium model is developed which can describe
a broad class of beam-plasma systems in an applied field, Bg.
The model treats arbitrary density profiles and azimuthal
self-magnetic fields as well as a thermal spread in the momentum
of the beam. It is assumed that the electron gyroradius is
small but not negligible compared with the beam radius, and
that the beam is completely charge neutralized but only
fractionally current neutralized. The electron orbit equations
are solved and are used to simplify the form of the distribution
function and the calculation of its velocity moments. The
rotation frequency of the beam and the diamagnetic or para-
magnetic properties of such warm beam-plasma systems are also

studied.
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I. INTRODUCTION

s

In recent years there has been much interest in the.equilibrium

} and stability properties of relativistic electron beams. One particular
reason for this interest is the use of relativistic electron beams as

P a plasma heating dev:Lo::e.l"8 An understanding of the physical mechanisms

: involved in this heating process requires a thorough knowledge of the

equilibrium and stability properties of the beam-plasma system. In
general the stability analyses of such beam-plasma systems that have
appeared in the literature have assumed that the background plasma

provides both complete charge and current neutralization.6-l3

For the stability analysis it is also generally assumed that the beam is
cold as well as spatially uniform and infinite in radial extent.
Some work has been done where only partial charge and current neutraliza-

tion have been aasumedl4 and where finite-radius beams have been st:udiedls-19

but a more complete analysis is needed. The presence of self magnetic
fields and radial boundaries can have important effects on the mode
structure of beam-plasma systems; for example, their presence can
greatly enhance the coupling between the transverse and longitudinal
waves that are found by treating a uniform, current neutralized beam.

The purpose of this article is to present a Vlasov equilibrium model

for a warm relativistic electron beam propagating through a background
plasma immersed in a .uniform applied magnetic field, Bz. The model
allows for self-magnetic ffélds, for arbitrary radial beam density
profiles and for a thermal‘apread in momentum, however, it will be
assumed that the beam is charge neutralized by the background ionms.
Since BG#O and the beam is warm, both paramagnetic and diamagnetic beam

equilibria are possible, where the magnitude of Be can be adjusted by
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varying the fractional current neutralization provided by the counter-
streaming of the background electrons. In a subsequent paper this
equilibrium model will be used in analyzing the stability of such a
beam-plasma system. It should be pointed out that this model can easily
be generalized to describe the problem of a Tokamak plasma with a supra-
thermal electron population. Here again both the toroidal and the

poloidal magnetic fields can be described as well as the finite radial

density profile.v

The applied field, Bz’ is assumed large enough so that the gyro-
radius of both the beam electrons and the background electrons is small
compared to the radius of the beam. With this assumption the electron
orbits are easily calculated by an expansion method using the smallness
of the gyroradius and the method of harmonic balance.20 These orbits
are useful in writing down the distribution functions for the two a
electron components in a convenient form that will facilitate the
calculation of the velocity moments. The ions will be described by

a stationary cold fluid_model which will be shown to be appropriate
m,we,r,

icihb
for m>>wci and Ti é EBiET Pt

In Section II a discussion of the assumptions that are appropriate

in describing this beam-plasma system will be presented. Following this
discussion, the procedure for calculating the electron orbits will be
outlined in Section III. The beam electron distribution function, fb’
and its velocity moments are developed in Sections IV and V, whereas
Sections VI and VII provide a similar development for the background
electrons. The equations that describe the self-consistent magnetic
fields are presented in Section VIII and the numerical solution of these
equations are included in Section IX, which gives some examples of

typical beam-plasma equilibria described by this model. Finally,
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Here !l refers to the streaming (¢ independent) component of the motion,

(0)
z

1 refers to the gyromotion, and x has been identified as p‘./mey.
Eq. (15) was solved with all the variables written as functions of R;
then the intermediate result for R was expanded about R=r in order to
arrive at the solutions exhibited in Eqs. (33), (34) and (35), where all
the variables arg again written as function of r. Also note that
2 is not simply f%ﬁ but contains a drift correction of 0(e).

From Eqs. (34) and (35) it is clear that the streaming component
of the motion involves both streaming along the field lines as well

as a drift across the field lines. Defining a pitch angle, n, for

the streaming motion one has
G} 2 2 B o

p" w pl P" ((L) )
Py sdan = ice +‘% 5 zce3 20

n m rw mr(w )

ce e ce e ce
e
1/ %e
P, cosn = p, 1+ 1 e (38)
w

ce

so that
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Thus the streaming is predominantly along the field lines for the
case considered here, however the streaming does depart slightly from
this course due to the curvature drift as indicated by n(z).

The fact that the 0(e) correction to the guiding center position,
Dél), is nonzero for this ordering can be explained by consideration

of the conservation of canonical angular momentum, Pe. If each beam elec-
tron is injected axially into the plasma at some r=R with zero mechanical
angular momentum from a source which is immersed in the axial applied
magnetic field, then the canonical angular momentum of the electron is
simply -wieRZIZ. The contribution of the axial self-magnetic field to Pe
is not considered here since it is two orders of magnitude smaller than
the contribution of the applied field. Now as the electron begins
streaming along the helical field lines while gyrating about them, it
gains mechanical angular momentum at the expense of the angular momentum
associated with the applied field. In terms of anharmonic oscillation
potential, Eq. (22), the potential minimum, R, and the phase-averaged
particle position, R, differ in first order, by an amount which depends
on the injection Yl" since the potential is a velocity-dependent one.
The rotation associated wjth the streaming along the field lines accounts
for the largest part of thé mechanical angular momentum and is of 0(e).
This process is equivalent to saying that the guiding center of the

electron is injected at §=R+v” wie/(wze)z, and not at R. The electron

is injected into the potential well at R, displaced from the minimum

sty




12

at R; thus the electron oscillates about R with a frequency, 2. Since V(p)

is not a simple harmonic potential there are also small correctioms to
the usual electron gyrofrequency as shown in Eq. (36). In what follows R
will be used to denote the electron guiding center position.
i It is also useful to write down the single particle orbits
in the equilibrium fields. These orbits are necessary in calculating
the perturbed distribution function when using the method of charac-
teristics in a stability analysis. If R'=R at 1=t'-t=0, the beam

electron orbits are

Py 2 ]
=Rt - (sin¢-sin¢0) + 0(e") (41) i g
m w i
e ce | i
P, w P :
4
g' = o +-< < c: ) T - 2 (cos¢—cos¢o) + O(ez)
A i mevrmce merwce
f Py 2
] 2' =z +—— 1+ 0(c) (43)
1 Y
}1 e
i‘ where terms of 0(83) have been dropped and where ¢-Qr+¢0.

| In order to describe the background electrons the following
4 v v X X

: ] 1

B ordering is used: —;r”bO(ez), 7;”b0(52), devO(ez) and 7?4»0(53)

(along with the assumptions found in Eqs. (1) and (2)). In this

T T

case the velocity of the electrons is found to be

v, = vycos¢ + 0(54) (44)
(5] |
Vi Y 4 | 4
W === + v,sin¢ + 0(e’) (45) ‘f
Yee i
v, = v+ 0(c) (46) |

|
|
i
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where ¢=mzet+¢0. This shows that the background electrons, which are
responsible for the partial current neutralization, essentially stream
along the field lines and gyrate about them. Again it is useful to

write down the orbits, which for the background electrons are simply

given by
v, 3
r' =r + o (sin¢-sin¢o)+0(e ) (47)
ce
v, 3
6' = 0 - = (cos¢—cos¢0) + 0(e”) (48)
Tw
ce
z'=z+vt + 0(53) (49)

where r'=r when 7=0.

Although Eqs. (27) through (32) have only been solved here for
two particular orderings, other solutions are possible %f the variables
are ordered differently. For example if the order of —%9 is reduced to
0(52) instead of 0(e), it is easy to find the new solutigns directly
from the solutions already discussed by merely changing the ordering
where appropriate and dropping any terms of 0(e3) or smaller. For
the particular example mentioned here, the diamagnetic current will

now be of the same order of magnitude as the azimuthal current due

to the electron streaming along the helical field lines, i.e.,

8 2
w Py
(5 g ac
w m_yw
ce 2' ce

w
This implies that the beam can be diamagnetic whereas if —ES v 0(e)

w
the beam is paramagnetic. The diamagnetic current is of cggrse a

fluid propery and does not appear in the single particle orbits.
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IV. THE BEAM ELECTRON DISTRIBUTION FUNCTION

Consider the distribution function

-g /T
i S L e b’ Th
fb = Nb(R)exp {- ¥, [H u)RP0 vaz]} = Nbe (51)

Here w: can be associated with the fluid rotation of the electron
beam and V: can be associated with the axial streaming of the beam.
Since the guiding center position of the electron is a constant of

the motion, N can be written as a function of R. Furthermore,

if ph is defined as
v = !
Py = Py =By s (52)

such that §u is the average value of the streaming component of the

momentum and p:‘represents the thermal spread about this average value,
p'

] i
then y can be expanded. Assuming bEL TP 0(1) and e 0(e) one
mc : m,c m.c
finds that
s 2, +2,=2
- Py By patey /Y 3
Y=Y+ + + 0(e™) (53)
=22 9% 202
52 1/2 Ymec Ymec
]
with y=|1 + 233 . Using this expression for y and the expressioms

found in Eqs.e(33), (34) and (35) for the components of Rs 8, can be

written as

2 2,~-2
2- p1+9:|/y
g, = mc'y S
2yme
g By “’ge+ & (54)
Wpr wz pysin¢ meae
ce
=b|s Pll wze X piwge 3
- Vz it > - sing - ma | + 0(e”)
ce Yce

where
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ce =
+g. (R)/T
- - =32 "B b
Nb(R) - nb(R)(ermeT) e (56)
where = 6
- b Pll ce
gb(R) = (me"y - wRR -mag
w
ce
ahol o 5D
P w
@l __L<_£) T
z " 2 z e z/|r=R
Yce

fb can be written in a convenient form. To accomplish this éb(R) and

nb(R) are Taylor expanded about R=r where

P

&S Sy 20y (58)

z
m w
e ce

Here again it is crucial that the gyroradius be small in comparison

to the radius of the beam. The final result is

p;, n

f = b ] < =372
fb = [nb(r) - — = sind (2nymeTb)
e ce
(59)
2 -2
pl+p:f/Y

ol ey e

ZymeTb

where Eb(r) is an arbitrary function of r and is obvious;.z identified
as the particle density. Moreover, the term involving ST sin¢
accounts for the diamagnetic current due to the gyromotion in the
presence of a density gradient.

The fact thatiﬁ}r) is an arbitrary function of r is of particular
interest, since it allows one to model any experimentally determined
density profile which satisfies the condition that the gyroradius is

small in comparison with the density gradient scale length. In Cartesian

coordinates an appropriate constant of the motion analogous to the guiding
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center position, R (see Eq. (58)), is

8'A4
g = x-—t , (60)
ce

| In this geometry the appropriate expansion for some function, h(gx),

( would be |
3
YV | |
h(e) ~ho) + (- L) (61) |
X w 13 |
ce X[(E_=x 0
x i
where again the gyroradius, vay/wcel, must be small in comparison %
o
| with the gradient scale length of h(gx). K}
VE |
V. VELOCITY MOMENTS OF f_ !
k| Using the expression (59) for the beam electron distribution }
4 function, one can easily determine the fluid properties of the beam. é
4 For the sake of convenience, the p, , p, and ¢ momentum space coordinates
introduced in Sec. III will be used instead of the P.» Py and P, system.
The Jacobian for this change of variables is given by
é} P B P !
' P 1 5 _ ce)_ L ’
dprdpedpz Pyil + - (wce T35 sin¢
2m r@c merwce
s (62)
3 ; E
+ 0(e7) dp_,_dp" d¢ A
With this change of variables and with the components of R given in Egs. 4

(33), (34) and (35), the moments of fb are readily calculated. The

| g g VS

density, n, the fluid velocity, Xb’ the fluid momentum, Eb’ and the

pressure tensor, '(['b’ are defined as follows:
N
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R
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anb = J R f d P (65)

3

'I\,Isz(g.g‘b) (—- )fbdp. (66)
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The density is trivially given by

o, ()=, (x)

and the fluid velocity and momentum are found to be

- 3
Pbr mevar 0 + 0(e™) 67
= 0 2
. g F Pllwce A pth Blnnb
be - Me''bo z z or
Yee zmewce
o3 B 0 6 (68)
+ o ( s ™ ) 0
z .3 2 2o * 0e)
mr(w )
e ' ce
F?. Bme
P, =myYV =P _ + (me r ) + 0(e)
bz bz I 2 e ar
2m r(w )
Y (69)

where y is defined in Eq. (53), and p:hEZme?Tb. The reason for

to 0(83) while only calculating P, to 0(52) is clear

calculating Pbe bz

where one examines the radial force balance equation, keeping in mind

w
that —%5 ~ 0(e). This equation is simply

w
ce 2
Phe . = 8 X
s ;;; * wcepbe %, wcepbz g nb [z.gb]r (70)

Calculating the elements of the pressure tensor, results in the

following expression for IZ'Eb]r

17
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2
Pen 9y
- or
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Thus by substituting Eqs. (68), (69) and (71) into Eq. (70), one can
easily verify that the radial force balance equation is satisfied
to 0(€3).

Defining a pitch angle, £, for the fluid motion one has

Pbe = Pllsina (72)
sz = P" cosg (73)
where
P osR. % P?l 6 2 aw(e:e) (76)
(T | 2m () (mce ™ *
e ' ce
so that 0
w
g . e (75)
Yee
and
=2 6 2 2
P G ) P 94n
£ i ae’ th " (76)

z dr
ce

m, B, r(w:e)3 2m, P, o
To first order the fluid also flows along the field lines, as did
the electron's guiding center. To second order, however, the motion of
a fluid element differs from the trajectory of the guiding centers.
This difference arises from the electron's gyromotion about the
guiding center position and from the presence of the radial density
gradient.

Considering Eqs. (75) and (76), the fluid motion of the beam has

(0 shows that the fluid

predominantly flows along the helical magnetic field lines. 5(2), on

a simple interpretation. As mentioned above ¢
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the other hand, describes the shear of the fluid flow away from the
field lines due to curvature drift and the diamagnetic drift. Thus
the self magnetic field, B:, will be paramagnetic as long as the
diamagnetic drift remains small. In order to have a diamagnetic

beam the diamagnetic drift must be at least as large as this streaming

along Q, 1.8,

w P 9
ce th nb
P" z N z or (17
w 2m w
ce e ce

This usually requires that the current neutralization must be fairly

complete. This will be discussed in more detail in Sec. VIII.

VI. THE BACKGROUND ELECTRON DISTRIBUTION FUNCTION

The background electron distribution function, fe’ is similar in

form to fb given in Eq. (51)

-g /T
N e s (78)

1 e =e
fe Ne(R)exp {- Te [H-wRPe-Vsz]}

Here w® can be associated with the fluid rotation of the background

R
electrons and V: can be associated with axial counterstreaming

of the background electrons. This counterstreaming is responsible
for the partial current neutralization. Since the guiding center
position of the electron is a constant of the motion Ne and V:
must be written as a function of R so that the return current is
restricted to the beam channel even though the background electron
density varies on a length scale much longer than T
Using the expressions found in Eqs. (44), (45) and (46) for the

components of y, 8o becomes

e .2 2 e s .2 5
8, = 3 [vit(v) -V, )"42ruga +2a V -V| ] + 0(c”)



20

e
0
where V'lzv:(r)+0(eb) and *5— v 0(63). By choosing Ne(R) as
ce -
N (R) = n_(2m T y-3/2 R e (80)
e e e e
where
- e 2
ge(R)¢2RwRae+2anz—V|' (81)
fe can be written in the following convenient form,
n vi+(vll-v (r))2
e i
£ a s SNp k= (82)
e 3/2 2
(2mm T ) Vih
2T e e t
with v:h 2 *;E . In arriving at this result Ee(R) was Taylor expanded
e
about R=r where
v, 3
R=r-~- o sin¢ + 0(e™) (83)
“ce

Note that Ee may be a weak function of r but is essentially constant

across the radius of the beam.

VII. VELOCITY MOMENTS OF fe

Using the expression for the background electron distribution
function, fe’ given by Eq. (82), the fluid properties of the background
electrons can be investigated. Again the ViV and ¢ velocity space
coordinates developed in Sec. III will be used in place of Vs Vg and

v, The Jacobian for this change of variables is simply given by
4
dv dvgdv, = [v,+0(e™) Jdv,dv , d¢ (84)

With the components of y in Egs. (44), (45) and (46) expressed in
terms of these natural coordinates, the moments of fe are readily

calculated. Since the background plasma is nonrelativistic, the density,

— T — BE— w— J




21

n,s the fluid velocity, Xe’ and the pressure tensor, Qe’ are defined
v

as follows:

n- J f d v (85)

neXe = J v f d v (86)
3

%e =m J (X—Xe)(x-xe)fed v (87)

Performing the appropriate integrations one finds

“e = ne (88)
v =0+0(H (89)
er
0
" “ce 4
Vee = + 0(e") (90)
w
ce
v =V, +0(h (91)
ez i
1 =0+ 0 (92)
o

Thus fluid motion of the background electron only involves the slow
counterstreaming along B; all other fluid motions are ignorable.

The fact that V'lis an arbitrary function of r allows the freedom to
choose the return current profile and thus determine the dependence

of Be on r.

VIII. MAGNETIC FIELD EQUATIONS

The result of Sec. V and VII can now be utilized to self consistently

determine the magnetic field, B. From Maxwell's equations, B 1s given by

yxB = %} A (93)
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where )J is current produced by the fluid motion of the electrons.

Since the ions are stationary, Eq. (93) simply becomes

w§b o2
zx’ﬁce L 'Y/b + —9—2 v, (94)
2 c c
4mn e
where wpa = ——;fL—-is the plasma frequency of species a. Substituting
e
Eqs. (68) and (69) for Xb and Eqs. (90) and (91) for Xe’ the equations
for the two components of B are
z 2 = 0 2
Jw w P w . P d&n
gkl SR pb Il _ce _ th nb
or 2 z - 2 2- z 9r
& BeeY MY
(95)
2 a2 ] 2
P“ ( ) ) amce ¥ e vIlwce
+ 3 - + 22 [ ]
2m2§r(mz ) we ar c2 e
e ce ce ce
2 =2 0 e 2
w P | dw w
{
19 (rwe y pb (W, | _ce - cell, Pe [y
r 9r ce c2 . 2m2§r(wz )2 me or c2 ]
e e ce ce (96)
Using the assumptions found in Eqs. (1) and (2) along with the
P
assumption that ;ﬂz v 0(1), Eq. (96) shows that
& 2 2
r w T
bpb _ b
5 7 < 0(e) o7
c rg

where L is skin depth of the beam. This implies that the fields can
readily penetrate into the interior of the beam. Furthermore, if
the current neutralization is considered poor, the first term on the

right hand side of both Eq. (95) and Eq. (96% provides the dominant
w.

b

contribution to the current. In this case —gh g v 0(e); however, if
Wpe e
the background plasma density is increased (or equivalently if the beam
v

density is decreased) while —éL-remains of 0(92) for the background
electrons, then the current neutralization is improved although
it is still not necessarily complete. When this occurs the situation

is more complicated. If the current neutralization is improved (e.g.,
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:}01 complete) by increasing n» but w:e/uie is still 0(¢e), then the f
first and last terms on the right hand side of Eq. (95) and Eq. (96)
are important. On the other hand if the current neutralization
is nearly complete (e.g., ;90% complete) so that wge/wze N 0(52),
then the diamagnetic current in Eq. (95) also becomes important,
whereas the terms proportional to (mze)2 become even less important.
To illustrate more clearly some of the different types of equilibria
that can be treated consider the following three cases:
Case i) - Here the current neutralization is poor, wie/wzeNO(c)

and ;E ~ 0(e). Keeping only the leading terms Egs. (93) and (96) reduce to

A awz w2 we
- e 4o L2 ‘-’: +0(e% (98)
¢ w
ce
w2
bl i i by i
r or (rwce) c2 vz e (99)

where from Eq. (55) one has 5“ = me;5:+0(ez). Since there is no
contribution from the diamagnetic current the beam will be paramagnetic.

Case 1i) - In this case the current neutralization is approximately

i
Te
leading terms the field equations are

502 complete, wze/w:e ~ 0(e) and ~ 0(52). Again only keeping the

z 6 2 2
Wee _ Yce [“pb b “pe ze 3
e ok R e SR e
w ¢ c
ce
w2 w2
13 8y . _ |pb b . “pe e 2
T or (TY9..) [cz L 2 Vz] + 0(e™) (101)

Here again the beam is paramagnestic. One particularly simple choice

mrazisjut

2

e o b(r) b

Vo(r) = - ;12?—— VoEy (102)
pe

where FN"constant and is the fraction of current neutralization.




24

In general, however,FN may be function of r.

Case iii) - In this case the current neutralization is nearly

) 2 2
complete, o fu “0(e”) and n, /n_O(r"). Here one finds that
ce ce b’ e

; sze “2e wzb s mze i w b pth alnnb 5
’ B e T e e s e Jid 103)
! W c c e 2m yw
ce e ce
2 )
d 0 “pb =b . “pe =e 3
s (rwce) = c2 . F Cz VZ + 0(e”) (104)

From Eq. (103) it is clear that the beam may be diamagnetic if the

current neutralization is good. Of course if the current neutralization

S < R s s il
"=

is very good, wgeNO and the beam is obviously diamagnetic.
These three cases illustrate the flexibility of this model in
E treating a variety of beam-plasma equilibria. In the next Section
; ? some specific examples will be presented for these three cases.

J One other interesting case arises when the beam is neither

paramagnetic nor diamagnetic, implying that the azimuthal current is

zero. Consequently Bz is uniform and Eqs. (103) and (104) reduce to

T T I T T STy
s —epevens S e

2
a4nn, (r)

R T Yeh “h
i 0= (0)V, (1-F) Jo2- ot (105)
2 L
| e
b w? ()
B 13 b - DDl FOrsl
B : 55 (rwce(r)) = 5 Vz(l FN) (106)

E——

c
where it is assumed for simplicity that Vi(r) is given by Eq. (102)
? : with FN=constant. It is easy to show that the other terms in Egs. (95)

and~(96) can be ignored for all values of FN when Je§O(e3) as long

5 -
! as'EﬂE v 0(l). Using Eq. (105) to eliminate wie(r) in Eq. (106), one
i e
obtains an equation for nb(r). Solving this equation for nb(r) one finds '
n, (0)
; A - S — (107)
, 2, 2.2
‘ ™ (1+4r /rb) .
V




25

which is the density profile derived from the Bennett distribution25’26

where the beam radius must be

2¢ p
- th
r = (108)
b =b =-1/2
mpb(O)VzmeY (l-FN)

If the beam radius is not equal to r,, then de/dr#O even though

b

nb(r) is given by Eq. (107). Bz is diamagnetic when r, <Ty and

paramagnetic when rb>;b.

If §k=0 (i.e., there is no return current), then Bz=const. implies
that the azimuthal fluid velocity of the beam vanishes so that the beam
is nonrotating. Physically this means that the diamagnetic current of
the beam exactly cancels the azimuthal current of the beam associated
with the electrons streaming along the helical field lines (plus any
azimuthal particle drifts, which are generally negligible). This
cancellation persists across the entire profile of the beam. Fig. 1
illustrates this point by showing a typical beam electron trajectory.
In particular, the sense of rotation of the gyromotion is opposite to
that of the rotation due to the streaming along the helical field lines.

If nb(r) is given by Eq. (107) but F _=const.#0, it is still possible

N
to have a nonrotating beam, however the rotation of return current

produces a residual diamagnetism. In this case the radius of the non-

rotating beam is found to be

2¢c p
v th
r, = (109)
b e, 172 1/2
wpb(O)Vzmey (1-FN)

Note that when F_=0

N0 ¥b=—b' Finally if F,_ is chosen as a function of

N

r, equilibria can be found with Bz=constant, however, nb(r) will not

correspond to the Bennett profile and in general the beam will rotate.




From this discussion, it is clear that a nonrotating beam is a
rather special case and that beams generally do rotate. Of course,
the physical consequences of this rotation in a stability analysis
will depend on the magnitude of the rotation frequency compared to

the time scale of interest.

IX. EXAMPLES OF TYPICAL BEAM-PLASMA EQUILIBRIA

Two density profiles that will be considered are the Bennett
profile and the Gaussian profile. The Bennett profile, however, is
more diffuse than the Gaussian profile (Fig. 2). This implies that
the steeper gradients at the edge of the Gaussian profile will produce
larger diamagnetic currents. This will have important consequences
for the beam rotation frequency.

If Eq. (102) is used for Vi(r) where for simplicity FN=const.,
then Eqs. (99), (101) and (104) are mathematically equivalent and are
easily integrated:

r ol (")
W) (1) = - %-J b P -Prtar (110)

0 c2

where FN=0 for case 1i, FNN.S for case ii and FN%.9 for case iii of

Sec. VIII. For the Bennett profile, Eq. (107), this can be integrated

to give
2 =b
w, (0)V_(1-F,)
wo (1) = - b« N — (111)
2c (1+r /rb)
For the Gaussian profile nb(r) is expressed as
(r) = (O)exp{—rzlrz} (112)
% " b

and the solution of Eq. (110) for this case is just

26
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WO 2 2,2
me (r) R wpb (O)VZ(I-FN) rb(l—exp {_r /rb })
s 2C2 r

(113)

Note that in both cases mge(r) increases linearly with r near the
center of the beam (r<<rb), and falls off like r—'1 outside the beam
(r>>rb). m:e is plotted as a function of r in Fig. 3, where for 1
comparison the density on axis, nb(O), and the beammadius, r,, are set
equal for the two different profiles. Although the total current

is the same for both profiles, the peak value of Be is 25% higher

for the Gaussian profile than for the Bennett profile simply because
the Bennett profile is more diffuse. By choosing FN appropriately,
the curves will correspond to any one of three cases discussed :

in Sec. VIII. With certain values for the parameters this model can

properly describe self fi:lds as large as “10% of the applied field

for a Gaussian profile (Fig. 4). Be could become even larger for a

density profile with a sharper boundary than the Gaussian profile.
Turning to the case where JeﬁO, it is interesting to examine

how the axial self magnetic field, B:, and the beam rotation frequency,

wps are modified by varying - Here the beam rotation frequency, Wp

is defined as

(114)

5 Ve(r)
wR r

- s v
If LTy then Bz will vanish for all r, and if =Ty then wp will
vanish for all r. B:(r) and mR(r) are plotted in Figs. (5) and (6)
for four different values of T where the beam density follows a
Bennett profile. Observe that the diamagnetic beams are thinner and

generally rotate faster near the axis than the paramagnetic beams.

Although FN-O.S, the diamagnetic beams considered here differ from

the paramagnetic beams of case ii in Sec. VIII because the beam
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radius is smaller. Figs. (7) and (8) display the corresponding curves
for B:(r) and wR(r) when nb(r) follows a Gaussian profile. Note

that wR(r) depends critically on the shape of the density profile while
B: only has a weak dependence on nb(r). in particular, the beam
rotates in the same direction across the entire profile of the beam

for the Bennett case for any LI whereas the beam can change its
direction of rotation at the outer edge of the beam for certain values

of r. when the density profile is Gaussian. Although the behavior of

b

B:(r) about rb=;b is interesting its magnitude is small compared to

the applied field since it was assumed that wze/wze§0(e) and

P
th
e < 0(e).
6
Larger values of p_, /m c or w /wz will of course make these effects
th' e ce ce
more important.

If the current neutralization is better in the interior of the
beam than at the edge of the beam, then a larger portion of the net
current flows on the surfaﬁe of the beam. This situation can arise
when r, e/c>1 and the return current has not yet diffused out of

bp
27,28

the beam channel. This situation is easily modeled by allowing

FNto be a function of r. One convenient choice is

EeEN = f'Nnb(r) /n, (0)

Figs. (9) and (10) show the effect that this has on Be(r) for the
Bennett profile and the Gaussian profile respectively for different
values of FN' When §N=1, Be still reaches an appreciable peak value
since the current is only completely neutralized at the center of the
beam. Furthermore with the current flowing nearer to the edge of the

beam, Be peaks further from the center of the beam than if FN(r)

were constant.
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. 2o

Although the choice of FN(r) given in Eq. (115) is instructive,
any reasonable function of r can be used for FN(r) in order to fit
any appropriate profile for Be(r). Thus both nb(r) and Be(r) can be
chosen independently. This fact makes this Vlasov treatment a very

| . powerful method for modeling beam-plasma systems.

X. CONCLUSIONS

LB R L o

The Vlasov equilibrium model that has been developed in this

paper can describe a very broad class of warm beam-plasma systems in

an applied field, Bg; but the entire treatment depends crucially on

{ the smallness of the electron gyroradius compared to the beam radius. i

T T

This condition, however, is easily satisfied in typical systems where

Bgil kg and rbzl cm. Assuming that this condition on the gyroradius

is satisfied, the procedure outlined in this paper can be used to model

any charge neutralized beam-plasma system with reasonable density

and azimuthal self magnetic field profiles. The density profile and
azimuthal field profile can be chosen independently since the theta
component of the VYxB equation can be satisfied by adjusting the fractional
current neutralizational factor, FN(r). In other words the (XXE)B
equation can be used to determine FN(r) given the functional
. dependence of n and Be on r. Of course, if FN(r) is known, then

the equation can be used to find Be(r).

By making the simple choice of FN(r)-const. and using the XXQ
equation to solve for Be(r) and Bz(r), it was possible to investigate
the dependence of the beam rotation frequency, mR(r), and the axial

self magnetic field, B:(r), on the density profile of the beam, nb(r),

and the fraction of current neutralization, FN. When FN>0.5 it was




found that B: can be diamagnetic for a sufficiently warm beam but when

FN<O.5,B: was paramagnetic. In general diamagnetic beams were also

found to be thinner
pinching force when
on the shape of the
radius ¥b (Eq. 109)
wR(r)=0 for all r.

case of the general
equilibrium model.

Because of the

than paramagnetic beams because of the increased
Je<0. It was discovered that wp depends strongly
density profile and that the Bennett profile with
corresponds to the case of a nonrotating beam, i.e

However, this nonrotating beam is only one special

type of beam-plasma systems described by this

flexibility in the choice of nb(r) and Be(r)

mentioned above, this equilibrium model will be very valuable for

30

studying the effects of self magnetic fields and radial inhomogeneities

on the stability of

beam plasma system. Since the model also allows

for a thermal spread in momentum, thermal effects on the stability of

such systems can also be studied. Furthermore, as mentioned in

Sec. III, the beam electron orbits found in Eqs. (41), (42) and (43)

and background electron orbits found in Eqs. (47), (48) and (49)

can be utilized in calculating the perturbed distribution functions

for a stability analysis using the method of characteristics. This

analysis will be the subject of a future paper.

e
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FIGURE CAPTIONS

Trajectory of a typical beam electron. The beam electron
gyrates about B in the opposite sense that it rotates about

the z-axis while streaming along B.

Beam density, nb(r), as a function of the radial position, r.
Both Bennett and Gaussian profiles are shown, with wpb(O)

and 2% identical for both cases.

Azimuthal self-magnetic field, Be(r), as a function of the

radial position, r. Here the fractional current neutralization,
FN,
discussed in Sec. VIII are obtained when FN50.1 (case i),

is a constant (OfFNfl). Examples of the three cases

FNNO.S (case ii) and FNKO.9 (case iii). The parameters of
the system are identical for both the Bennett case and the
10

Gaussian case: rb=1 cm, mpe=9.9XIO rad/sec; w:e(m)=3.0XIolorad/sec;

nb(O)/np(O)-0.0l; v=2; pth/mec-o.l.

Example of a case where the azimuthal self magnetic field
is greater than 10% of the applied field. Here a Gaussian
density profile is used and rb=2.0 cm; mpe=6.7SXI010rad/sec;
z 10 S

wce( )=3.0x10" rad/sec; FN=0, nb(O)/np(0)=0.04, v=2.0;

pth/mec-O.l.

Axial self-magnetic field, B:(r), as a function of radial
position, r, for a Bennett density profile with various
values of the beam radius, T Note B:(r)-o for ry

The other parameters of the system are the same as in Fig. 3

-Ebsl .0 cm.

with FN-O.S.

TG
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Fig. 8

Fig. 9
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Beam rotation frequency, mR(t), as a function of radial position,
r, for a Bennett density profile with various values of
N
the beam radius, ry- Note wR(r)=0 for rb=rb—0.7 cm.
The other parameters of the system are the same as in Fig. 3

with FN=O.5.

Axial self-magnetic field, B:(r), as a function of radial
position, R, for the case of a Gaussian density profile for
various values of the beam radius L Here B:(r) is nonzero

for all Ty The other parameters of the system are the same

as in Fig. 3 with FN=0'5'

Beam rotation frequency, wR(r), as a function of radial
position, r, for a Gaussian density profile with various values
of the beam radius, Rb' Note: there is no nonrotating case

for any Rb. The other parameters of the system are the same

as in Fig. 3 with FN=0.5.

Azimuthal self magnetic field, BZ(r), as a function of radial
position, R, for a Bennett density profile. Here FN(r)=
iﬁnb(r)/nb(O)for§N=0.0, 0.5 and 1.0. The other parameters

of the system are the same as in Fig. 4.

Azimuthal self magnetic field, B:(r), as a function of
radial position, R, for a Gaussian density profile. Here FN(r)-

FNnb(r)/nb(O) fot'FN-O.O, 0.5 and 1.0. The other parameters

of the system are the same as in Fig. 4.
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